Denoising of Surveillance Video Using Adaptive Gaussian Mixture Model Based Segmentation Towards Effective Video Parameters Measurement

ثبت نشده
چکیده

In recent times, capturization of video became more feasible with the advanced technologies in camera. Those videos get easily contaminated by noise due to the characteristics of image sensors. Surveillance sequences not only have static scenes but also dynamic scenes. Many efforts have been taken to reduce video noise. Averaging the frame as an image had limited denoising effect and resulted in blur. Such result will be avoided if we separate foreground and background, and make background to be averaged only. Recently, a number of video object segmentation algorithms have been discussed and unfortunately most existing segmentation algorithms are not adequate and robust enough to process noisy video sequences. Since the target video contains noise, a large area of background is incorrectly classified as moving objects and obvious segmentation error will appears. Therefore for robust separation, a segmentation algorithm based on Gaussian Mixture Models adaptive to light illuminations, shadow and white balance is proposed here. This segmentation algorithm processes the video with or without noise and sets up adaptive background models based on the characteristics of surveillance video to accomplish segmentation, reducing background noise by averaging and foreground noise by ML3D filter. The proposed method increased PSNR about 4.5 db compared to existing method and is capable of preserving video content. It is performed for two different video sequences. Keywords-noisy surveillance video, adaptive background models, segmentation, background denoising, foreground denoising, video parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Video Segmentation Using Adaptive-K Gaussian Mixture Model

Video segmentation is an important phase in video based traffic surveillance applications. The basic task of traffic video segmentation is to classify pixels in the current frame to road background or moving vehicles, and casting shadows should be taken into account if exists. In this paper, a modified online EM procedure is proposed to construct Adaptive-K Gaussian Mixture Model (AKGMM) in whi...

متن کامل

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Human Action Recognition Using Gaussian Mixture Model based Background Segmentation

Video surveillance has long been in use to monitor security sensitive areas such as banks, department stores, highways, crowded public places and borders. The increase in the number of cameras in ordinary surveillance systems overloaded both the human operators and the storage devices with high volumes of data and made it infeasible to ensure proper monitoring of sensitive areas for long times....

متن کامل

Real-timeVideoSegmentation Using Student'stMixture Model

Mixture models for video segmentation have mainly revolved around Gaussian distributions for a long time due to their simplicity and applicability. In this work, we propose a novel real-time video segmentation algorithm based on Student’s t mixture model. Though, Student’s t-distribution has been used for image segmentation by applying Expectation Maximization (EM) algorithm, the same technique...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012